Altered quality control in the endoplasmic reticulum causes cortical dysplasia in knock-in mice expressing a mutant BiP.

نویسندگان

  • Naoya Mimura
  • Shigeki Yuasa
  • Miho Soma
  • Hisayo Jin
  • Keita Kimura
  • Shigemasa Goto
  • Haruhiko Koseki
  • Tomohiko Aoe
چکیده

Binding immunoglobulin protein (BiP) is an endoplasmic reticulum (ER) molecular chaperone that is central to ER function. We examined knock-in mice expressing a mutant BiP in order to elucidate physiological processes that are sensitive to BiP functions during development and adulthood. The mutant BiP lacked the retrieval sequence that normally functions to return BiP to the ER from the secretory pathway. This allowed us to examine the effects of a defect in ER function without completely eliminating BiP function. The homozygous mutant BiP neonates died after birth due to respiratory failure. Besides that, the mutant BiP mice displayed disordered layer formation in the cerebral cortex and cerebellum, a neurological phenotype of reeler mutant-like malformation. Consistent with the phenotype, Cajal-Retzius (CR) cells did not secrete reelin, and the expression of reelin was markedly reduced posttranscriptionally. Furthermore, the reduction in the size of the whole brain and the apparent scattering of CR cells throughout the cortex, which were distinct from the reeler phenotype, were also seen. These findings suggest that the maturation and secretion of reelin in CR cells and other factors related to neural migration may be sensitive to aberrant ER quality control, which may cause various neurological disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Late-Onset of Spinal Neurodegeneration in Knock-In Mice Expressing a Mutant BiP

Most human neurodegenerative diseases are sporadic, and appear later in life. While the underlying mechanisms of the progression of those diseases are still unclear, investigations into the familial forms of comparable diseases suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis. Binding immunoglobulin protein (BiP) is an ER chaperone that is central to ER function. W...

متن کامل

BiP, an endoplasmic reticulum chaperone, modulates the development of morphine antinociceptive tolerance

Morphine is a potent analgesic, but the molecular mechanism for tolerance formation after repeated use is not fully understood. Binding immunoglobulin protein (BiP) is an endoplasmic reticulum (ER) chaperone that is central to ER function. We examined knock-in mice expressing a mutant BiP with the retrieval sequence deleted in order to elucidate physiological processes that are sensitive to BiP...

متن کامل

The Role of BiP Retrieval by the KDEL Receptor in the Early Secretory Pathway and its Effect on Protein Quality Control and Neurodegeneration

Protein quality control in the early secretory pathway is a ubiquitous eukaryotic mechanism for adaptation to endoplasmic reticulum (ER) stress. An ER molecular chaperone, immunoglobulin heavy chain-binding protein (BiP), is one of the essential components in this process. BiP interacts with nascent proteins to facilitate their folding. BiP also plays an important role in preventing aggregation...

متن کامل

Calcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex

Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...

متن کامل

Calcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex

Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2008